Deterministic multi-qubit entanglement in a quantum network

Nature
  • 1.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 2nd edn (Cambridge Univ. Press, 2010).

  • 2.

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

    ADS 

    Google Scholar
     

  • 5.

    Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Axline, C. J. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Campagne-Ibarcq, P. et al. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett. 120, 200501 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Leung, N. et al. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Inf. 5, 18 (2019).

    ADS 

    Google Scholar
     

  • 9.

    Zhong, Y. P. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

    CAS 

    Google Scholar
     

  • 10.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018); publisher correction 562, E2 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 13.

    Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    DiCarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Gühne, O. & Seevinck, M. Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010).

    ADS 
    MATH 

    Google Scholar
     

  • 16.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    ADS 

    Google Scholar
     

  • 17.

    Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Rosenberg, D. et al. Solid-state qubits: 3D integration and packaging. IEEE Microw. Mag. 21, 72–85 (2020).


    Google Scholar
     

  • 20.

    Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    CAS 

    Google Scholar
     

  • 22.

    Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Chang, H.-S. et al. Remote entanglement via adiabatic passage using a tunably-dissipative quantum communication system. Phys. Rev. Lett. 124, 240502 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. Preprint at https://arxiv.org/abs/2004.06168 (2020).

  • 27.

    Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 28.

    Wang, Y.-D. & Clerk, A. A. Using dark modes for high-fidelity optomechanical quantum state transfer. New J. Phys. 14, 105010 (2012).

    ADS 

    Google Scholar
     

  • 29.

    Strauch, F. W. et al. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chou, C.-W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438, 828–832 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Roch, N. et al. Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Narla, A. et al. Robust concurrent remote entanglement between two superconducting qubits. Phys. Rev. X 6, 031036 (2016).


    Google Scholar
     

  • 38.

    Dickel, C. et al. Chip-to-chip entanglement of transmon qubits using engineered measurement fields. Phys. Rev. B 97, 064508 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Kurpiers, P. et al. Quantum communication with time-bin encoded microwave photons. Phys. Rev. Appl. 12, 044067 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 41.

    Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Baksic, A., Ribeiro, H. & Clerk, A. A. Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 43.

    Zhou, B. B. et al. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017).

    CAS 

    Google Scholar
     

  • 44.

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Korotkov, A. N. Flying microwave qubits with nearly perfect transfer efficiency. Phys. Rev. B 84, 014510 (2011).

    ADS 

    Google Scholar
     

  • 46.

    Sete, E. A., Mlinar, E. & Korotkov, A. N. Robust quantum state transfer using tunable couplers. Phys. Rev. B 91, 144509 (2015).

    ADS 

    Google Scholar
     

  • 47.

    Yin, Y. et al. Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 48.

    Wenner, J. et al. Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014).

    ADS 

    Google Scholar
     

  • 49.

    Srinivasan, S. J. et al. Time-reversal symmetrization of spontaneous emission for quantum state transfer. Phys. Rev. A 89, 033857 (2014).

    ADS 

    Google Scholar
     

  • 50.

    Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).


    Google Scholar
     

  • 51.

    Zeytinoğlu, S. et al. Microwave-induced amplitude-and phase-tunable qubit-resonator coupling in circuit quantum electrodynamics. Phys. Rev. A 91, 043846 (2015).

    ADS 

    Google Scholar
     

  • 52.

    Xiang, Z. L., Zhang, M., Jiang, L. & Rabl, P. Intracity quantum communication via thermal microwave networks. Phys. Rev. X 7, 011035 (2017).


    Google Scholar
     

  • 53.

    Vermersch, B., Guimond, P.-O., Pichler, H. & Zoller, P. Quantum state transfer via noisy photonic and phononic waveguides. Phys. Rev. Lett. 118, 133601 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Neeley, M. et al. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523–526 (2008).

    CAS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Engineering professor says Japan’s plan to dump treated radioactive water in the sea is not dangerous
    The race to curb the spread of COVID vaccine disinformation
    NIH reverses Trump-era restrictions on fetal-tissue research
    Exoplanet Types: Worlds Beyond Our Solar System
    Invasive Species: Pest Plants and Animals Caused $1.7 Trillion in Damages Worldwide

    Leave a Reply

    Your email address will not be published. Required fields are marked *