Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells

Nature
  • 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Park, N.-G. et al. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Lu, H., Krishna, A., Zakeeruddin, S. M., Grätzel, M. & Hagfeldt, A. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 23, 101359 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article 

    Google Scholar
     

  • 11.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Herz, L. M. et al. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    NREL. Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html (accessed 17 March 2021).

  • 14.

    Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yang, S. et al. Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. J. Mater. Chem. A 4, 9430–9436 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Kim, D. H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Walker, B., Kim, G. H. & Kim, J. Y. Pseudohalides in lead-based perovskite semiconductors. Adv. Mater. 31, 1807029 (2019).

    Article 

    Google Scholar
     

  • 23.

    Moore, D. T. et al. Direct crystallization route to methylammonium lead iodide perovskite from an ionic liquid. Chem. Mater. 27, 3197–3199 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Seo, J. et al. Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency. Adv. Energy Mater. 6, 1600767 (2016).

    Article 

    Google Scholar
     

  • 25.

    Nayak, P. K. et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Meng, L. et al. Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. J. Energy Chem. 41, 43–51 (2020).

    Article 

    Google Scholar
     

  • 27.

    Khan, Y. et al. Waterproof perovskites: high fluorescence quantum yield and stability from a methylammonium lead bromide/formate mixture in water. J. Mater. Chem. C 8, 5873–5881 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Askar, A. M. et al. Composition-tunable formamidinium lead mixed halide perovskites via solvent-free mechanochemical synthesis: decoding the Pb environments using solid-state NMR spectroscopy. J. Phys. Chem. Lett. 9, 2671–2677 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kubicki, D. J. et al. Cation dynamics in mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 10055–10061 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Zhou, Z. et al. Synthesis, microwave spectra, X-ray structure, and high-level theoretical calculations for formamidinium formate. J. Chem. Phys. 150, 094305 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Ross, R. et al. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Article 

    Google Scholar
     

  • 33.

    Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Yang, D. et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071–3078 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Kuik, M., Koster, L. J., Wetzelaer, G. A. & Blom, P. W. Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Green, M. Accuracy of analytical expressions for solar cell fill factors. Solar Cells 7, 337–340 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Website maker Squarespace files to go public on NYSE through direct listing
    The new U.S. plan to rival China and end cornering of market in rare earth metals
    Coronapod: could COVID vaccines cause blood clots? Here’s what the science says
    Dire Wolves Were Real! But Not Wolves
    Jeff Bezos says Amazon needs to do a better job for employees in his final shareholder letter as CEO

    Leave a Reply

    Your email address will not be published. Required fields are marked *